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Extended Dynamical Systems and Stability Theory

The term dynamical system, as used in this note, is used to
describe a one-parameter family of operators with certain properties
defined in an appropriate space and is a natural generalization of
differential equations, functional differential equations and cer-
tain partial differential equations. Zubovl has shown that the
stability theorems of Liapunov as well as their converses are ap-
plicable to dynamical systems, These results play an important role
in theoretical studies of stability but, unfortunately, are not easy
to apply to particular problems.,

For ordinary differential equations and functional differ-

ential equations LaSalle2 and Hale5

have shown that the limiting
sets of trajectories which lie in a compact subset of the space are
contained in the largest invariant set where the derivative of the
Liapunov function V +vanishes. The purpose of the present paper is
to extend this result and other related stability results to dynam-
ical systems, In this manner the invariance principle and the sta-
bility theorems obtained are also applicable to a large class of
partial differential equations. The natural setting for the study
of dynamical systems is a Banach space, which can be considered as
the space of continuous functions over a finite interval in the
case of functional differential equations, as the Euclidean space

in the case of differential equations, and as a Sobolev space for

certain hyperbolic partial differential equations.



Let R denote the interval [0,») and . a Banacn

space with ||o] the norm of an element ¢ of this space.
d

Definition 1, We say u is a dynamical system on a Banach

Space &3 if u is a continuous mapping of R+ X 6}) into &3,
u(t,p) is uniformly continuous in t for t,p in bounded sets,
u(0,9) = ¢ and u(t+t,9) = u(t,u(7,p)) for all t,7 20, ¢ in

@. The positive orbit O+Gp) through ¢ in ® is defined as

O+(@) = | u(t,p). We say ¢ is an equilibrium point if O+(@) =
t20

= Q.

Zubovl has discussed systems of this type, without the uniform
continuity condition on bounded sets, and referred to them as general-
ized dynamical systems. In the theory of dynamical systems on n-dimen-
sional vector spaces the concept of invariant sets is basic since the
limits of orbits are invariant sets. Zubov defines an invariant set
of his generalized dynamical system as a set M such that, for any
¢ in M, O+(®) belongs to M. Since wu is defined only on R*
this appears at first sight to be a reasonable definition; however,
this definition does not impart any special significance to the limit
set of an orbit and appears unreasonable since it generally occurs
that trajectories having limits can be used to define functions on
(-o,®), We shall therefore modify the definition of invariant set.

If uw 1is a dynamical system on 65 then one can be

)

assured that O+(®) has a nonempty limit set if O+(¢) belongs to

a compact subset of &5. In ordinary differential equations and




functional differential equations it is possible to show that O+(®)
belonging to a bounded set implies O+(®) belongs to a compact set
(see, for example ref. 3 ) and thus the limit set is nonempty. How-

ever, for many partial differential equations, this is not the case,

On th- other hand, for certain partial differential equations bounded

orbits in.dg will belong to a compact set of a larger Banach space ;Cg .
It is this latter property which we wish to exploit in de-

tail. More specifically, if we know that every bounded orbit in

&3 belongs to a compact set in \;::, then we can discuss the

limit of the orbit in \J5 (thus extending the dynamical system) and

as a consequence hope to obtain more specific information about

trajectories than would be possible by remaining only in 65.

These remarks provide the motivation for the following discussion.

The reader should contrast this approach with the one of Auslander and

: Lo, . .
Seibert 1in which it 1s assumed that the space 63 is locally compact,

Let &5,12 be Banach spaces, 63 C\lg and let there

exist a constant K > O such that P £ K o
ol = Kol

Definition 2. ILet u be a dynamical system on 63. Let

*
B be the set of ¢ in J5 such that there is a sequence ¢, 1in

(® and a function u*(t,p) in B for t 4in R', such that

2
”@n—wﬂ&? -0, Hu(t,$n)_u*(t,¢)”j% -0 as n - o uniformly on

* *
compact subsets of R+. We refer to the function u*: R+ X 63 — 43

*
as the extension of the dynamical system u to 63 or simply as

the extended dynamical system,

The function u* is clearly an extension of wu. In fact,

if ¢ 1is in (ES, then there exists a sequence P in (3 such



that H@n-QHE)—ao (and therefore H@n-qﬂg —-0) as n -, This
fact and the continuity of u implies Hu(t,Qn)-u(t,@)He -0 as
n > o and therefore ”u(t,@n)—u(t,w)u$%—+o as n — oo, Thus

w¥(t,9) = u(t,p) for ¢ in (® . Furthermore it is easy to prove

Lemma 1, The function u*(t,m) is continuous in t and

u*(0,9) = @, u*(t+1,p) = u*(t,u*(1,9)) for t,7 in K and o

in 65*.

We now give a definition of invariance of a different nature

from the one given by Zubov:

Definition 3. A set M in &5* is an invariant set of

the dynamical system if for each ¢ in M there is a function

U(t,p) defined and in M for t in (-o,o) such that, for any

o in (-w,®), u*(t,U(0,p)) = U(t+o,@) for all t in R'.

Definition 4: For any ¢ in 65, the w-limit set Q(o)

of the orbit through ¢ is the set of V¥ in Jo such that there

is a nondecreasing sequence {tn}, tn.> o, tn'—>w as n - o such
that ”u(tn,w)-wmz -0 as n -,

It should be noted that sets are invariant according to the
above definition relative to the interval (-o,») and that the
w-1limit set of an orbit is obtained relative to convergence in \Zg
and not in &%. With these definitions it is then possible to

prove the fundamental




\

Lemma 2; Let ¢ in @ ve such that O+(cp) belongs to a
bounded set of LP) and a compact subset of ﬁ o Then the w-1imit
set Q(p) of the orbit through ¢ is a nonempty, compact, connected
set in (?3*, invariant with respect to the extended dynamical

system and distﬁ (u(t,q)),g(cp)) 50 as t -

>

Proof: Since O+(cp) belongs to a compact subset of &,

it is clear that Q(¢) 1is nonempty and belongs to a compact subset

- *
of 45 . We shall show below that it belongs to (E) . Suppose

v

that ¢ in Q@) is given and that {ty}, nondecreasing, ¢ o,

n
t,—o® as n-w satisfies ||u(tn,(p)-¢r||\g—>0 as n - w», For a
given 7 in [O,w) there exists an no('r) such that t - 120
for n =z no('r) and it is therefore meaningful to consider the se-
quence u(t+tn,cp); nz no(T), t in [-t1,7]. By hypothesis there
exists an M such that ||u(t,q>)||® SM for all t in [O,w).
Thus Hu(t,cp)”\g S KM for n=2 no('r), t in [-71,7]. Also, since
u(t,p) 1is uniformly continuous in t for t,p 1in bounded sets,

for any € > 0O there exists a © > 0 such that

||u(t+s+tn,cp)-u(t+tn,cp)”\€ < K”u(s,u(t+tn,cp))-u(O,u(t+tn,cp))||® =
for n z no('r), 0= s = 8 This proves that the sequence
[u(t+tn,cp)}, t in [-7,7] 1is uniformly bounded and equicontinuous
in & . Since this sequence belongs by hypothesis to a compact

subset of JZ, Ascolit's theorem implies the existence of a sub-




sequence which we again label by tn such that it converges uni-
formly on [-7,7]; that is, there exists a function U(t,®)

continuous in t such that lim “U(t’Q)-u(t+tn’¢)“§3 =0 uniformly

n—o

on [-T,7]. Obviously U(0,p) = ¥. Letting now 7= 1,2,...
successively and using the familiar triangularization procedure we
determine a subsequence which is relabled by tn and a continuous
function U(t,p) defined for t in (-w,») such that

1lim HU(t,¢)-u(t+tn,®)u§; = 0 uniformly on compact subsets of

n—o

(-, ). Applying this in'partioular to [0,w) we obtain that

belongs to (E;l Furthermore, it is clear that U(t,p) 1is in Q(o).
Let now o be an arbitrary real number in (-w»,®), We

claim that U(t+0,0) = u" (t,U(0,p)), t 2 O. For this particular o

We have lim [lu(o+t ,0)-U(o,@)|| =0 and lim [u(t,u(o+t_,o)) -
n—>00 o 8 n—o0 "

- U(t+0,®ﬂhg = O uniformly on compact subsets of [O,»), But
this is precisely the manner in which u*(t,U(c,m)) was defined.
This shows that Q(¢) is invariant with respect to the extended
dynamical system. It is clear that Q(p) is connected.

We now show that Q(p) is closed. Let ¥, in Qo) be
such that Wn >V as n — o, Then for any e-neighborhood of ¥
in I8 there exists a te’te —>® as € —» 0 such that ”u(te,w) -
- w”ﬁf €, Hence closure,

Finally, assume there exists a sequence {tn}, nondecreas-

ing, t - as n-w and an o> 0 such that ”u(tn,m)-wuﬁg z o



for all ¥ in (p). By assumption {u(tn,m)] belongs to a com-
pact set of I8 and therefore there exists a subsequence which
converges to ¥ in J5. But then V¥ belongs to Q(p) by defini-
tion, contradicting the assumption and the proof is complete.

We now define the concepts of stability with respect to

these spaces:

Definition 5: If 3zero is an equilibrium point, then we

say that zero is stable if for every € > 0 there exists a & >0

such that Hcp}]GS < & implies Hu(t,@)”&f'e for all t =z O. If,

in addition, there exists a b > 0 such that H@Hds < b dimplies

”u(t’®)”j% —- 0 as t - o then the origin is said to be asymptotically

stable ((R,J8). The origin is called unstable if it is not stable.

It is remarked that asymptotic stability is defined by taking
limits in ;E?, as 1s to be expected from the definition of w-limit

sets.

If V is a continuous scalar functional defined on 63,

we define

o) = lim F[V(a(t,9))-V(9)].
t >0

Following LaSalle5 we give




Definition 6. We say a scalar functional V is a Liapunov

functional on a set G i& 65 if V 1is continuous and bounded be-

A

lovon G and V(@) =0 for ® in G. We define sets R,M as

follows:

R = {®p in X5 :there exists {p.} in G with 1lim H® -@H =0
n n e

n-—o0
and lim V(e ) = 0},
n—oo
and M is the largest set in R which is invariant with respect to
the extended dynamical system,
With the above definitions and with the fundamental Lemma 2

it is now possible to prove stability theorems which are direct
generalizations of thoge given for functional differential equations

5,

and differential equations .

Theorem 1. Suppose every orbit O+(w) which is in a
bounded set in 63 also belongs to a compact set in B, If v
is a Liapunov functional on G and an orbit O+(m) belongs to G
and is in a bounded set in 63, then u(t,p) » M in I35 as

t - oo,

Corollary 1l: Suppose that every orbit which belongs to a
bounded set in 65 also belongs to a compact set in B . Assume
V 1is a continuous scalar functional defined on GE), Sp = {(p in O
V(p) < p} and let G be Sp or a component of Sp. If V is a

Liapunov functional on G and any orbit remaining in G Tbelongs to

P



s u(t,p) »M in N
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Note, in this corollary, that if zero is in G and M con-
sists of only the point zero, then the origin is an "attractor" but
we have not shown it to be stable. The following result gives
conditions that insure stability. The part of the corollary which
does not follow directly from Theorem 1 is proved as in the usual

Liapunov theory.

Corollary 2; If the conditions of Corollary 1 are satisfied
and V 1s a continuous positive definite functional on G, then
zero is stable. If, in addition, M = {0}, then zero is asymptoti-
cally stable (8, $5). 1If, in addition, V is negative definite,
then zero is asymptotically stable (63,&5).

The stronger form of asymptotic stability given in the last
part of this corollary siould be noted. Unfortunately, for any given
system it is very difficult toc construct a Liapunov functional with

these characteristics.

Theorem 27 Suppose that every orbit which is in a bounded
set in 63 also belongs to a compact set in .ZS . Let zero De an
equilibrium point contained in the closure of an open set U and
let N Dbe a neighborhood of Zero, Assume that

(i) V is a Liapunov functional on G = UnN N,

(i1) M N G 4is either the empty set or is zero,
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(iii) V(@) <n on G when @ # O
(iv) Vv(0) = n and V(p) = 7 when ¢ 1is in that part of

the boundary of G inside N.

Then zero is unstable. More precisely, if N_ .is a bounded neigh-
borhood of zero properly contained in N, then ¢ # O in Go'z
=GN N implies that there exists a T >0 such that u(T1,p) be-
longs to the boundary of No'

The proofs of these theorems and corollaries follow closely

=

those previously given for ordinary differential equations”.

The lemmas and theorems displayed above are in terms of
two spaces, 63 and ;Ig . If the space d3 is a Hilbert space

then a considerable simplification occurs.

»

Lemma *: If 53 is a Hilbert space and ¥ is a Banach space, 73 Cijf,

A

HCPH&3 KH@H&% for some constant K>O,then the unit ball in 63

is closed in B .

T:is lemma is a direct consequence of the Ranach-Saks Theoremn.

It follows that if 63 and J3 are Hilbert spaces,
then the set 65* in Definition 2 is the same as 65 and there-
fore the extended dynamical system is the same as the original
dynamical system. Therefore, the w-limit sets will belong to 63
but the convergence of u(t,p) to its w-limit set is in the sense
of the topology of Jo and not, in general in GES. These remarks
play an important role in the applications to certain partial differ-

ential equations.



